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Small-angle multiple scattering of light particles at glancing 
incidence for screened Coulomb interaction 

K T Waldeer and H M Urhassek 
hst i tut  ri Theoretische Physik, T U ,  W-3300 Bra-chweig, Federal Republic of 
Germany 

Received 19 February 1991, in h a l  form 7 June 1991 

Abstract .  We study the multiple scattering process of light partides in random 
media in  the small-angle approximation. Particular consideration is given to the 
reflection of particles impinging under a glancing angle on a surface. The particle 
flux is described b y  a linear integro-differential equation. Results for the space, angle 
and pathlength-dependent partide flux are derived using the method of eigenfunc- 
tions. The propertier of the solution are discussed for various powa-law scattering 
potentials, and the diflenmces from the well-known diffusion cwe, corresponding to 
Coulombscattering, are emphasized. For the specislcaJeofaninverse-squareinterac- 
tion potential, a rigorous solution of the transport equation is derived, and compared 
to two approximations which have been employed in the literature: deviations occur 
in particular for small path lengths travelled (small eneqy loss). The influence of 
the boundary condition at the surface on the solution is investigated. Applications 
of the theory to energy loss spectra of reflected particles are discussed. 

1. Introduction 

If a light-ion beam is injected with a particular direction into a random medium, it 
is deflected by collisions with target atoms. Whereas wide-angle scattering can he at- 
tributed to single scattering events, we shall be concerned with small-angle scattering, 
which stems from the combined effect of many weak scattering events (Bohr 1948, 
Scott 1963). This so-called multiple scatter process has been investigated theoreti- 
cally quite intensely in the last two decades (Firsov 1967, 1968, 1970, Sigmund and 
Winterbon 1974, Marwick and Sigmund 1975, Sigmund et a/ 1978). The restriction 
to small-angle scattering allows a considerable simplification of the theoretical anaiy- 
sis. When the smali-angle approximation hoids, a more or iess compieie solution ior 
the space, angle and path-length-dependent distribution of the scattered particle Aux 
has been found for the case of Coulomb interaction; this solution is commonly called 
the digasion case (Firsov 1967, 1970, Remizovich 1984). I t  applies for rather high 
bombarding energies. 

Sometimes, however, multiple scattering of light ions is of interest at lower bom- 
barding energies, when the Coulomb interaction is screened (Mashkova and Molchanov 
1985, Hou el a/ 1978, Vukanit and Janev 1986). This is, roughly speaking, the case 
for light particles, like protons, for energies helow some tens of a keV. Here, experi- 
ments are performed, where the impinging ion is directed under a glancing angle on a 
surface (Hou e l  a l  1978, Harriss e t  al 1980). These experiments are motivated mainly 
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by the needs of fusion technology for an understanding of light-ion reflection from 
surfaces. Then most of the reflected particles are again found at glancing emission 
angle, such that the assumption of small-angle scattering appears justified, In such 
a case, the multiple scattering distributions are far less completely known. A special 
case of interest is multiple scattering under an inverse square potential; for this case, 
only approximate formulae have been derived (Firsov e t  nl 1976, Sigmund et al 19i8),  
the validity of which is not well known. 

Apart from the reflection of light ions form solid surfaces, multiple scattering 
theory has also been employed for an understanding of energetic electron scattering 
in solids; here often-but not necessarily (Tilinin 1982)diffusion theory is adopted 
(Bethe ei Q I  1938, Tolmachev 1986). Scattering of light from atmospheric impurities 
or local density fluctuations can also be described as a multiple scattering problem 
(Remizovich el a/ 1981, Gerstl ei a /  1987'). 

From a mathematical point of view, the solution of the transport equation presents 
quite a challenging problem. I t  is an integro-differential equation, differential in the 
space coordinate and in the path length travelled (usually identified with energy loss), 
and an integral equation with respect t o  the angular variables. The mathematical 
analysis is further complicated by the fact that  the integral kernal is strongly polar; 
this implies that  the solution contains generalized functions, or distributions, non- 
integrable singularities and discontinuities. Examples of these will he found in the 
formulae below and in several of the graphs. This fact also complicates the analysis 
on several occasions, for example, where integration and limit operations cannot be 
interchanged (see appendix 2) ,  or where the straightforward collision number approx- 
imation does not converge (section 5.1). 

We present in this paper a theoretical study of small-angle multiple scattering 
processes under glancing incidence, emphasizing the influence of the single scattering 
potential on the multiple scattering distribution. In particular, we wish to outline the 
deviations of the distributions under screened Coulomb interaction from the diffusion 
case. We proceed as follows: the transport equation-a linear integrodifferential equa- 
tion with a strongly singular kernel-and its small-angle approximation are presented 
in section 2. The general method of solution follows an eigenfunction method (section 
3). For multiple scattering distributions in an infinite medium, the general solution is 
presented as a threefold Fourier integral; all these quadratures can be performed an- 
alytically in the diffusion case (section 4). In section 5, we derive a number of special 
results for the infinite medium case. Among others, a rigorous solution of the multiple 
scattering problem under inverse square interaction is given (preliminary results have 
been presented by the authors (1988)), and the behaviour of the distributions for small 
path lengths is discussed; here drastic quantitative differences appear between the dif- 
fusion soiution and muiiipie scattering under screened Couiomb inieraciioii. Since, iii 
experiments, azimuth and polar angle resolved distributions are measured, we present 
an approximation for the azimuthal part of the distribution and discuss its validity 
(section 6). In the following section, the influence of the boundary conditions on the 
scattering distributions is discussed, This is possible analytically by investigating the 
path length integrated distributions of reflected particles (section i.1). Furthermore, 
we present in this section general integral relations which connect infinite medium and 
half-space distributions. In section 8.1, we compare our analytical result for multiple 
scattering under an inverse square potential with two approximations which are com- 
monly used in the literature, and discuss the limits of validity of these approximations. 
As our last issue, we discuss a number of points for the interpretation of the energy 
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Small-angle multiple scattering of light particles 809 

spectra of measured particles and, in particular, the role of straggling in electronic 
energy loss (section 8.2). An itemized conclusion ends the paper. 

2. T h e  transport equation and its small-angle approximation 

The theoretical modelling of multiple scattering processes of light particles often re- 
sides on a separation of electronic and nuclear stopping events of the projectile in the 
target. The interaction of the projectile with the target electronic system decelerates 
the projectile without deflecting it. On the other hand, it can often be assumed that 
collisions of the light projectile with heavy target atoms lead to only negligible energy 
loss, but to a definite deflection. Hence, in the common theoretical treatments of 
multiple scattering, electronic energy loss is neglected at  first, and the path-length- 
dependent multiple scattering distribution due to interaction of the projectile with the 
screened atomic nuclei is calculated. Electronic energy loss is then re-introduced at  a 
later stage, by convoluting the multiple scatter distribution with an electronic energy 
loss distribution for given path length (cf section 8.2). 

The multiple scatter transport process in random media can be described by a 
linear Boltzmaun equation. Let f ( T ,  fl, E ,  t)  d3r d E  d’R be the mean number of pro- 
jectiles moving in the target a t  time t ,  differential in the position variable r ,  direction 
of flight fl and energy E.  It obeys a linear forward Boltzmann equation (Sigmund 
1981): 

a a 
- f ( r , f l ,  E , t )  + u f l  . - f ( r ,  f l , E , t )  at a7 

= N dEd’R‘{K(E‘,R’- E,R)u‘f(r ,R‘ ,E‘ , t )  

(1) 

J 
- K ( E , R  + E’, f l ’ )uf (~ ,R,E, l ) )+sources .  

Here, U is the velocity of the projectile of energy E ,  N is the target atom density, and 
K ( E ,  fl - E’, fl‘) dE’dZR’ is the differential cross section for a particle moving with 
energy E in direction R to scatter a t  a resting target atom into energy (E’, dE’) and 
direction (fl’, d’R’). It may be written as 

(2) 
1 

K ( E ,  fl -+ E’, fl’) dE’d’R‘ = --6(fl, fl’ - ji)d2C2’ u(E,  r))dq. 
2a 

Here, ji and q are the direction cosines of the scattering angle in the laboratory system 
and the centre of mass system, respectively. The energy E‘ of the scattered particle, 
and ji, can be expressed by r )  using the laws of kinematics. Finally, u ( E ,  7) denotes 
the scattering cross section. 

In the following, we shall be interested in the secalled Lindhard power cross 
sections, defined by 

~ ( E , q ) d q = C E - ’ ~ ( l - r ) ) - l - ~ d q  (3) 

where the power exponent m is in between 0 < m 5 1, and the coefficient C is a 
function of the masses and atomic charges of projectile and target atom (Sigmund 
1981). They approximate scattering in inverse power potentials, V(r) a r-ll”’. 
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Due to the structure of the transport equation (l), it  is advantageous to introduce 
the fluz 

& ( ~ , n , E , t )  = ~ f ( ~ : n , E , t ) .  (4) 

We now concentrate on the transport process of very light ions (mass Mp) in a 
target with mass M, > M p .  In this case, particles lose only a negligible amount of 
energy, and hence we may get rid of the energy variable in equation (1). To this end, 
we substitute the energy variable by the cosine of the scatter angle r) in the centre 
of mass system. For very light projectiles, the centre of mass system is identical to 
the laboratory system, i.e. q = ji; hence integration over the scatter angle in the 
laboratory system is possible. Then we are left with 

Here, r = vt measures the path length travelled, and S denotes the sources. In 
addition, utr is the transport cross section, defined by 

l /Nutr  has the intuitive meaning of the length after which a unidirectional beam has 
become isotropic. 

The notation of the angle variables in this paper is taken to apply immediately to 
the scattering of particles from surfaces under grazing incidence angle. To this end, let 
the surface be described by the plane z = 0 of a Cartesian coordinate system, where 
the I axis is directed perpendicularly into the material. Furthermore, the azimuth 
angle around the normal is denoted by p, and the cosine of the polar angle towards 
the z axis by p ,  

In the following we shall not be interested in the lateral spatial variables, so we 
integrate them out in equation (5), and are left with the flux & ( r ,  n,r). After scaling 
all length variables to the mean transport path 

we introduce the small-angle approximation: for a particle entering the medium at  a 
glancing angle with direction cosine 0 < po << 1 and initial azimuth angle 'po = 0, for 
not too large path lengths R, the flux will he centred around p = 0, 'p = 0. So the 
integral limits in equation (5) may be extended to infinity, and we finally obtain 
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The strongly polar kernel makes the integral divergent for m -+ 1, as we shall see 
below. The factor (1 - m) outside the integral sign renders the integration product 
convergent. 

The geometry relevant for equation (8) is sketched in figure 1. Note that p and 
po can also be interpreted as the angle of the projectile flight direction towards the 
surface; they are positive (negative) for projectiles flying into (out of) the target 
medium. 

Figure 1. 
surface. All quantities denoted in scaled form. 

Geometry for glancing angle refledion of li&t particles from a solid 

Equation (8) is our basic equation. It is a linear integro-differential equation, 
containing a strongly singular kernel. We shall attempt a solution using the method 
of eigenfunctions. To make the solution definite we need also boundary and initial 
conditions, which will be defined below. 

3. Solution by  eigenfunctions 

Let us assume as source one particle entering the medium: 

S(Z ,P ,  v ,  R)  = ~(+)WW(P - p0)6((0). 

Otherwise, at path length R = 0, no particle is moving: 

(9) 

@ ( z , p , p , R = O ) = O .  (10) 

This constitutes the initial condition for our equation. With equation (9), the flux is 
normalized to one: 

Now, the calculation of the general solution of equation (E), with source (9) and initial 
condition (lo), is possible without the need to specify the boundary conditions. This 
is done by constructing first the general solution of the homogeneous equation (i.e. 
with source SE 0), and second a special solution of the inhomogeneous equation. 
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After Laplace transformation of equation (8) in R 

m 

@ ( ~ , P , V , S )  = 1 dRe-'R@(z,P,vo,R) (12) 

the general solution of the homogeneous equation with S = 0 is given by 

@,,,(z, PI v> .) = 1:dP J _ , _ ~ ~ A ( R , P ; ~ ) ~ - ~ / ~ D , ( I I -  as,v;a,P). (13) 

Here, D,(u, U ;  < >  q)  is the angular eigenfunction of the linear integro-differential oper- 
ator in equation (8) with eigenvalues q,  < and arguments U, U for a fixed value m: 

This expression holds true only for m < 1. The validity of equation (13) can he 
proved by inserting it in the Laplace transformed equation (a), using definition (14). 
The spectral density A ( @ ,  P ;  s) still has to be specified by the boundary conditions of 
the problem. 

The angular eigenfunctions D,(u, U;[> 7) obey the orthogonality relation with 
weight U: 

Here 
use is the expansion of the 6 function in angular eigenfunctions: 

is the complex conjugate of D,. Another very important relation we shall 

Jm dqJm $D,(u, v ; < , q ) ~ ( d , v ' ; ( , q )  = - 1 6(u - u')6(v - U'). 
U -m -m 

The proof of both relations is straightforward, using definition (14). 
To obtain a special solution of the Laplace transformed equation (E), we use the 

method of variation of constants, which is well known from the theory of linear dif- 
ferential equations. Let the spectral density A ( a ,  p; s) be depth dependent in equai 
tion (13); after inserting this into equation (E), we derive a differential equation for 
the z-dependent spectral density. The solution of this equation is inserted into equa- 
tion (13) and leads to the special solution of the Laplace transformed inhomogeneous 
equation (8): 

@part(~,C",V,S;PLo) 
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Here S(C) denotes the Heaviside step function. The sum of the general solution of the 
homogeneous equation and the special solution of the inhomogeneous one, 

@ h f 4 P , S ; P o )  = ahom("lP',PIS)+@part(Z,ilrPIS;~O) (18) 

is after Laplace inversion the general solution of the problem, given by equations (8)- 
(10). After the specification of boundary conditions, the spectral density A ( a , P ;  S )  

and hence the entire solution can he uniquely determined. 
The solution of equation (8) with Coulomb interaction m = 1 leads to a different 

set of eigenfunctions (Remizovich 1984). We were not able to obtain analytical results 
in this case. In the following, we often use m = 1, but in the different meaning 
of solving equation (8) for all m with the eigenfunctious (14) and then taking the 
borderline case from the left side m + 1- .  This case is often called the diflusion 
solution (Firsov 1967). Here, the angular eigenfunctions may he expressed by known 
mathematical functions: 

Here, sgn(C) is the signum function and Ai(() is the Airy function using the standard 
UBIIIIILI"'I \Ii"raL,r"wlk' allu Jregurr ,J"d, .  
,.,-:.:.- I A L  :.. .-, C L  r n r c ,  

4. General solution in the inf ini te  medium 

In this section we study the solution for infinite medium boundary conditions. Such 
a medium extends in all directions homogeneously, and the plane z = 0 where the 
projectile enters the medium only acts as a reference plane, and not as a true surface. 
Obviously, in such a medium, the solution must vanish at  large distances from the 
source: 

@ I M ( ~ ~ ~ - + W , P , P , R ; P O )  = o .  (20) 

Beca.se apart vznishes fer 1.7 1 - 1  - E, eql?ztia!! (I?), znd zccording to eqnztion (!3), 

@ I M ( Z ! P I P ~ R ; P O )  = apart(zvP~P,R;Po).  (21) 

the spectral density A(a,  8; s) must be identical to zero, the infinite medium solution 
is given by the particular solution only, 

Inserting equation (14) in (17), interchanging integrals and performing the Laplace 
inversion, we may express QIM by the threeioid Fourier integrai: 
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with 
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Y 
I,(y) = 1 ( t 2  + 1)" dt 

0 
(23) 

The infinite medium solution is symmetric in p and po,  and the function 

The Fourier integrals may be performed explicitly in the diffusion case m = 1, and 
pim+3@IM(zrf& p, R; ro )  depends only on z / P ~ " " ~ ~  R/@, d p 0  and p/po. 

we obtain the well-known result (Rossi and Greisen 1941) 

@IM('! p? p! R; PO) 

+ ( ; -p)2+q}.  (24) 

We know of no other m value where all three Fourier quadratures can be performed 
analytically. 

5. Results for the infinite medium 

In the following, we study special marginal distributions and moments of the flux 
@ ( z , p ,  p, R; po)  in order to analyse their characteristic features. The dependence of 
the flux on the scattering cross section will be of particular interest. 

5.1. Behaviour for small R 

The distribution for small values of the path length R can be calculated for all values 
of the power exponent m by expanding equation (8) to first order in the number of 
collisions occurring. This can be done by adding a small quantity E in the denominator 
of the integrand in equation (8). For R - O+ and E - 0 we then obtain in the small- 
angle approximation 

We denote this distribution as the flux of immediately reflected particles. One has to 
bear in mind that the interchange of integration and limit operation R - O+ is not 
rigorously possible. We show in appendix 2 how the generalized functions invoked are 
dealt with in a mathematically exact way. 

For the azimuth integrated flux, the analogous result can be obtained by using 
a Taylor expansion in equation (22) (cf appendix 2). In equation (25), we clearly 
see that the diffusion case is atypical, since here @,,(R = O+) 3 0. For all values 
of m < 1, there exists a non-vanishing number of immediately reflected particles. 
With decreasing value of the power exponent m (more heavily screened Coulomb 
interaction), the flux of the immediately reflected particles increases and more and 
more particles are reflected to larger angles p < 0. This means that the small-angle 
approximation will become worse for smaller m. 
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5.2. Azimuth integrated puz 

For m = $ the azimuth integrated flux can be given explicitly (see appendix 1) as 

Here, the definitions 

have been employed. The remaining integration in equation (26) can be performed 
analytically; the result is given in equation (A1.6) in appendix 1. 

Figure 2 displays the azimuth integrated fluxes for m = f and 1 at  the reference 
plane z = 0 calculated with equations (24) and (A1.6). They are suitably scaled to 
be universal for all po; thus absolute values are not immediately comparable. In the 
diffusion case m = 1,  the main part of the distribution is situated at  p < 0. The 
maximum in p is independent of R; it is situated at  p/po = -f and the distribution 
is symmetric with respect to this maximum. For small R, the distribution vanishes 
exponentially, because all particles leaving the source in direction po > 0 have to travel 
a finite path length, before they can invert their direction of flight to p < 0. For large 
R, the distribution vanishes as l / R Z .  

For m = f ,  the distribution is also mainly situated at  p < 0. However, for 
R = 0, the maximum is a t  p = 0; it changes with increasing R to the asymptotic 
value p / p o  = -(6a+ 16)/(9n+32) -0.5782. The distribution is rather asymmetric 
around this maximum, decreasing much faster in the direction of positive p.  The most 
striking difference from the diffusion case, however, is the existence of a non-vanishing 
number of particles reflected immediately; cf section 5.1 above. The distribution of 
these immediately reflected particles a t  R = O+ has its maximum at  p = 0-; it 
decreases fast with decreasing p < 0; cf equation (25). 

5.3. Flut at z = 0 

The flux at  the reference plane z = 0, integrated over R and v ,  
m m 

@ M ( Z  = O , P ; P ~ )  = 1 d R J  d v  @ I M ( z  = O , p , v , R ; ~ o )  (28) 
-m 

can readily be calculated for m = $ and m = 1: 

for m = 1 

The results are displayed in figure 3. They will be discussed jointly with the corre- 
sponding half-space distributions in section 7.1. 
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Figure 2. Flux at z = 0 for infinite medium and half-space boundary conditions. 
(a) m = 1, infinitemedium; (a) m = 4 ,  infinitemedium; (c) m = 1, half-space. 
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ll,o Ix=O.pI, Ll~p"lx=o.pl 

-2  0 2 

Figure 3. Path-length integrated flux 0 and the particle current density fi0 at 
I = 0 for infinite medium (broken curve) and half-space boundary conditions. (a) 
m = 1; (a) m = 1 2' 

5.4. Angle integrated f7uz 

The angle integrated flux 

may be calculated for all m < 1 as a series expansion in R/lz/Rfio- 11" or its inverse: 

-2m(n+l) -I  

(31) 
R "  

x ( * >  l k - 1 1  

For special values of m ,  equation (31) may be expressed by known mathematical 
functions: 

for m = 1 

for m = ?. 2 
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0.3 

0.2 

0.1 

Figure 4. Range distribution of the flux at I = 0 for an infinite medium for several 
V ~ U S  or m. 

where g(C) is an auxilary function to the Fresnel integrals using the standard definition 
(Abramowitz and Stegun 1965). 

In figure 4, @(z = O,R,pO)pim+' is plotted against R/pim for m = 1, 3 4 '  1 2 

and i, using equations (31) and (32). Here, as in figure 2, we observe the flux of the 
immediately reflected particles for m < 1 at R = 0. With decreasing m, the maximum 
of the path length distribution shifts to smaller values of R until, for m 5 $, i t  is 
located at  R = 0. Corresponding to this enhancement at R = 0, the distribution 
descreases more steeply at large R with decreasing power exponent m. Note that  
the angle integrated particle current density is given by ( p ) f , R Q ( ~ , R ; p O ) ;  here, the 
brackets denote a moment of the distribution function; cf section 5.5 below. Especially 
at I = 0, i t  is proportional to a. So it has the same dependence on R as a. 

We note that in the case of isotropic hard sphere scattering (corresponding to 
m = -1 in our notation in equation (5)), the reflected flux can be calculated analyti- 
cally without introducing any approximations. The immediately reflected flux then is 
proportional to [ p  - pol-' (KuSEer and Zweifel 1965). 

5.5. Momenis 

In order to understand the interdependence of flight direction p ,  depth I and path 
length R, we calculate the mean direction of flight (P),,~ for fixed values of z and 
R and the mean depth ( z ) ~ , ~  for fixed values of p and R after integration over the 
azimuth angle. Here, the brackets ( ) denote moments; e.g. ( F ) ~ , ~  is defined by 

From equation (22) we obtain 
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Thus, for fixed path length R travelled, there is a range of depths z ,  where the mean 
direction of flight is positive, i.e. particles continue flying deeper into the medium. 
But for larger path lengths, the mean direction is inverted. In particular, in the 
limit R -+ m or at  the surface z = 0, the mean direction of the particle current is 
(P)~.~,~ = -Po/(2m), which is well known (Sigmund et a1 1978). In the diffusion 
case, the mean value of the angular distribution at  z = 0 is identical to the maximum 
value of O(z = 0,p ,  R) (figure Z(Q)) for all R ,  which must obviously be the case for 
a Gaussian distribution. In the case of m = i, the angular mean value is ( P ) = = ~ , ~  = 
-po2 i.e. a t  the specular angle. This is a larger reflection angle than the maximum 
value for any path length R (figure 2 ( b ) ) .  

The mean penetration depth ( z ) ~ , ~  is independent of m and proportional to R. 
It is zero for particles with path length R = 0, i.e. particles reflected at  once, which 
is obvious, and for p = -po,  i.e. for specularly reflected particles. Note that ( z ) ~ , ~  is 
independent of the azimuth angle, i.e. ( z ) ~ , ~  = ( z ) ~ , ~ , ~ .  

6. An approximation for the a z i m u t h  d e p e n d e n c e  

We construct an approximation to the function I,(y) in equation (22) from its be- 
haviour a t  small and large values of the argument: 

(35) 
1 

2m+ 1 L ( Y )  = Y + - lY12mY.  

The quality of this approximation can be judged from figure 5,  where i t  is plotted for 
several values of m. For m = 1, it is exact; with decreasing m, the region y Z 1 is less 
satisfactorily approximated. 

Inserting equation (35) in ( E ) ,  the azimuth integration can be factorized from the 
remainder: 

and 

Here the tilde characterizes the approximated function. This approximation assumes 
the azimuth and the polar angle part of the distribution to be statistically independent. 
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m;l 

1 0‘ 
m.112 

m=lI4 

lo’ 

1 

1 0’ 
1 

Y 
16’ 

Figure 5.  Function Im(y), equation (ZZ), (full) andits approximation (35) (broken). 

It is exact in the diffusion case, where the angular distribution is given as a product 
of Gaussian distributions. For other values of m, statistical independence no longer 
holds because, particularly in the immediately backscattered flux, azimuth and polar 
angle are correlated by the single collision kinematics. 

In this approximation, the immediately backscattered flux vanishes for p # 0, 
because aIM(p,R = Ot) = 6(p). The azimuth distribution shows a singularity a t  
p = 0 for R -+ O c ,  namely aIM(p = 0 , R )  = T(1/2m)/2mn(./,R)1/2m, in contrast to 
the exact solution (25). Since the influence of I,,,(y) on the solution decreases with 
increasing R very fast, this approximation becomes better for large R. 

We study the relative error E of the approximation 

in figure 6 for m = f . In this case, 

whereas @(z = 0, p, R; p a )  can be calculated from equation (22) up to one integration, 
which we performed numerically. We note that for small values of R/go ,+‘/pa only is 
the error large. With increasing values, the approximation becomes satisfactory. 

7. Half-space 

7.1. Fluz at the surface 

In a half-space problem, no particles can enter the region 2 > 0, with the exception 
of the projectile a t  R = 0. Thus,  the boundary conditions read in this case 
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Let us denote by @o the-unknown-outgoing flux at  the surface 

@HS(X = O-,P < O,Pp,R;Clo) = @o(Px$ lR;Po) ,  (42) 
The problem of determining aHS is much more complicated than the infinite medium 
problem, because the homogeneous part (13) contributes to the general solution, and 
we need to determine the spectral density A ( a ,  P; s). From the boundary condition at 
infinity, it follows that the spectral density must vanish for OL < 0. After multiplication 
of equation (18) with pf5;;;(p-ofs, q;a' , i j " ) ,  integratingover p and (0, using equations 
(13) and (17), the orthogonality relation (15) and the first boundary condition (41) at 
the outer surface z = 0- for a' < 0 and all p', we derive an integral equation of the 
first kind for @o(p ,p ,s ;po ) :  

0 1: d v l -  dpp@o(p , ip ,  s ; ~ ~ ) D , , , ( p  - a 's , i p ;o ' ,P ' )  = -D,(Po - a's ,O;u- ' ,P ' )  (43) 

and for a' > 0 a reduction formula for the spectral density: 
m 0 

a'A(a' ,p ' ; s )  = L m d P L m  d P P @ o ( P 2 ( 0 > s ; P o ) z ( P  - " '" . 'P;a>P').  (44) 

In order to obtain the solution @Hs(x,p,v,  R ; p o ) ,  we first have to determine the flux 
at  the surface using equation (43). Then the spectral density has to be calculated 
and inserted in equations (13) and (18), and at last a Laplace inversion leads to the 
general result. Equation (43) is not known to have been solved, but a partial solution 
is known in the literature (Remizovich 1984). 

If one is interested only in the path length and azimuth integrated flux at the 
surface, @o(p;po) ,  one may make use of the fact that all particles entering the medium 
x > 0 have to leave it again. It can be shown that a0 is a homogeneous function of 
degree (-2),  and equation (43) can be solved using a Mellin transformation in the 
(-0') variable. Then the result, reads for all m (Remizovich 1984): 

sin s- 
1 2 m + l  . 

lPl@o(P;Po) = Gm+l ( ,:1> 

( m ) l ~ o l - ~ z m + l ~ / ( m + l )  -' 

(45) 
. )  

x ( ~ k ~ ( ~ m + l l / ( m + l l  

p < O  O < m < l .  

+2cos s- + -  
m + l  
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In figure 3, the angular distribution of the flux O o ( p , p 0 ) ,  and the particle current 
density p@,,(p,p0) are plotted form = 1 and 4, using equations (45) and (29). Infinite 
medium and half-space distributions are displayed. In a half-space, the flux goes to 
zero at  p = 0. Its maximum lies at  smaller p < 0 for m = f than for m = 1, although 
the particle current density at  the surface has largest modulus at  p = -po and is 
outward directed. These features hold true for all other values of m as well. 

In the infinite medium, the distributions show qualitatively the same behaviour as 
the half-space distributions at p < 0. The particle current density is mainly directed 
outward with its largest modulus at  p = -p0,  and the maximum of the inward directed 
current density is a t  p = po. As discussed above, in the R-dependent case the flux is 
symmetric for m = 1 and asymmetric for m = with respect to its maximum. We 
note that, for m = i, there is only a negligible difference between the infinite medium 
and the half-space solution for the outgoing flux p < 0. 

The influence of the boundary conditions on the particle flux increases with in- 
creasing path length R. For R = 0, the solution must obviously be independent of 
the boundary conditions, since no transport could yet occur. For large R, however, a 
particle can cross the reference plane z = 0 in an infinite medium potentially a large 
number of times, which is impossible in a half-space. On the other hand, we observed 
that with decreasing m the particle distribution has more and more weight in the 
region of small values of R.  We are hence led to conclude that with decreasing m 
the influence of the different boundary conditions on the reflected particle flux should 
decrease as well. This conclusion is substantiated by comparing figures 3(a) and ( b ) ,  
where infinite medium and half-space fluxes ressemble each other more closely for 
m = f than for m = 1. 

7.2. Integral relations 

There are two equivalent integral equations to determine @ o ( p , p , s ; p o )  from the in- 
finite medium solution. From equations (18), (20) and (44) the general half-space 
solution follows as 
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These integral equations are well known in ion reflection and Green function theory 
(Firsov el a1 1976, B0ttiger el a1 1971). Using equation (47), it is straightforward to 
show their equivalence. For m = 1, the Laplace transformation of the infinite medium 
solution is possible analytically and after insertion in one of the two equations (48), 
we derive integral equations, the solution of which can he found in the literature 
(Remizovich el al 1980a, b). So after a Laplace inversion the half-space solution of 
the flux a t  the surface I = 0- is given as 

~ O ( ~ , ’ P , R ; ~ O ) = @ I M ( ~ = ~ - , I I <  O,p,R;po)erf (@) p < o  (49) 

where erf(C) is the error function (Abramowitz and Stegun 1965). The azimuth inte- 
grated distribution at  the surface, ao(p, R;pO) ,  is plotted in figure 2; i t  is calculated 
immediately from equation (49). We note that for Ip/pol < R/3p i ,  the difference 
beween the infinite medium and the half-space solution is negligible. 

8. Discussion 

8.1. Approzimalions for m = 4 
Several approximation formulae exist for the infinite medium solution for the multiple 
scattering distribution under an  inverse square scattering potential, m = (Firsov et  
a /  1976, Sigmund el a /  1978). These have been derived from analogy to the diffusion 
case. In our nomenclature the approximation due to Firsov el a/ reads (Firsov el a1 
1976) 

Another approximation, by Sigmund el a / ,  is given by (Sigmund e t  a/ 1978, VukaniC 
and Janev 1986) 

@ I M ( ~ =  0 , f L  R;Po) 

These approximations are plotted in figure 7. For R not too small, equations (50) 
and (51) are good approximations to the exact solution (A1.6), which is displayed 
in figure 2 ( b ) .  However, equation (51) displays a singularity a t  R = 0 and p / p o  = 

everywhere. 
In contrast to equation (A1.6), both approximations predict the angular maximum 

to he at p/po = -; for all R.  So neither equation (50) nor (51) is able to describe 
the features of the distribution at  very small R although they have been used in this 
area (Vukanit and Janev 1986). In fact, the single-collision analysis presented above 
shows that @(R -* O f )  does not vanish for m < 1 in contrast to approximation (51). 

-- i .  Only at  very small R does equation (51) fail, for it vanishes a t  R = 0 almost 
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Figure 7. Flux at I = 0 for infinite medium boundary condition and m = $, 
( a )  Firsov approximation, equation (50):  ( b )  Sigmund approximation. equation (51). 

8.2.  Energy  spec f ra  

For calculating approximate energy spectra of particles, we convolute the angular 
multiple scattering distribution with an energy loss distribution for given scaled path 
length R,  F ( t ,  R) ,  i.e. 

@ ( " > P I  V ~ C ; P ~ )  = dR p(6 ,  R ) @ ( z , P ,  9, R ; P ~ ) .  ( 5 2 )  
LO9 
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Here 6 is the flux differential in the energy loss 6 .  There are several possibilities to 
model the distribution F .  For not too large path length r ,  the following simple model 
is often used: r is set proportional to the energy loss (Vukanit and Janev 1986): 

Here often only the electronic component Se of the total stopping power S is considered 
since it is dominant for the cases of interest here. From the scaling equation (7), we 
have 

where y = 4MpMt/(Mp + M,)' (< 1). Here we made use of the fact that, for small 
mass ratios, the transport cross section is proportional to the nuclear stopping power 
S,. Then the model assumes that the projectile loses energy at  a constant rate, such 
that path length and energy loss are essentially identical 

Thus, the path-length-dependent distributions derived in this paper may be immedi- 
ately interpreted as energy loss spectra. 

In order to obtain an idea about the influence of energy straggling, in a first 
approximation we use a Gaussian energy loss distribution with energy-independent 
"+-,.,."I:"". 
U*L'L&&"lL&. 

exp[-(c - u R ) ' / 2 v w R ]  d 1 F ( € , R ) d c  = &GGx 

Here u = fy Se(Eo)/Sn(E,) and w = W(Eo)/Se(Eo)Eo, where W(Eo) = 
S T 2 a ( E o , T ) d T  is the second moment of the collision cross section at the ion im- 
pact energy Eo. For light ions of some keV energy, the straggling should be predom- 
inantly nuclear. Inserting (56) into (52) in the diffusion case m = 1, we obtain the 
backscattered flux 

B(Z = 0, P ,  v> r; P o )  

. - I  
X ( P 2 + P P o + P ; + q + . ? L w )  ,P2 

(57) 

Here r = 1 - E/Eo and IC,({) is the modified Bessel function of second order 
(Abramowitz and Stegun 1965). In figure 8, equation (57) is plotted for several val- 
ues of the dimensionless straggling w. Here, values for forward scattering 'p = On, 
p/po  = -0.45 were chosen, and a value of v = 0.62, appropriate for the scattering 
of 15 keV H t  from Au in an experiment by Harr is  el a/ (1980). With increasing 
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straggling the distribution broadens and the height of the maximum decreases. For 
not too large w ,  its influence is restricted to high energies, while for higher w the whole 
distribution changes without shifting the maximum. There is a small part of the  d i s  
tribution located at  energies E > E,. This effect is due to the model of constant 
energy straggling where the Gaussian distribution F allows particles t o  gain energy. 
In a more realistic model this effect should be suppressed by a better choice of F, 
demanding w = 0 for E 2 E,. We wish to note that another discussion of the influ- 
ence of energy straggling on the energy loss distribution of light ions in small-angle 
multiple scattering theory has been given by Tilinin (1982). 

K T Waldeer and H M Urbassek 

Figure 8. Scaled energy distribution of bdscattered particles (equation (57)) for 
several values of the energy straggling W .  (A) w = 0, ( e )  w = 6.7 x lo-', ( C )  
w = 6.7 x (D) w = 6.7 x lo-'. 

In figure 9 we compare the results of our theory, equation (22), for m = $ with 
experimental datafor the specular reflection (9 = 8, = 7.5', $o = 0') of5 keV Het ions 
from a polycrystalline N i  surface. In our model, only the parameter ySe(E,)/Sn(E,) 
enters; i t  is taken as 0.67 (VukaniC and Janev 1986). For comparison, the azimuth 
resolved n = f approximation (VukaniC and Janev 1986) is also included in the plot. 
We see that our rigorous solution of the transport equation (8) does not describe the 
experimental data well for E - E,. In contrast to the experiment, the transport 
equation predicts a finite amount of particies to be scattered back with very small 
energy loss. We ascribe this to the fact that  those particles scattered back immediately 
from the surface (path length R = O+), do in reality suffer a finite nuclear energy 
loss in those collisions This energy loss is not contained in (8). The approximate 
solution (51) on the other was forced t o  vanish smoothly for R - O+: this describes 
the experimental result better. Summarizing, we wish to conclude that  while the 
overall agreement between the theoretical model, which is without free parameters, 
and experiment is fair, the quantitative behaviour of the backscattered flux is not 
predicted as accurately by the model, (8), as one could wish. Finally, we wish to 
note that in this model all particles are eventually reflected out of the target; this is 
due to the neglect of energy loss in the basic equation (8). Thus we are not able to 
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obtain accurate reflection coefficients. There do exist recipes in the literature on how 
to improve on this point (Tilinin 1982). 

Figure 8 .  Comparisonof experimentaldata (0) of5 keV He+ ions reflectedfrom a Ni 
surface (Hou d a l  1978) and theoretical results (m = i). Incidence angle 90 = 7.5', 
specular scattering conditions. F h I I  line: equation (22); broken line: Vukanit and 
Jane" (1986). 

We wish to note that there exist a number of processes not included in the multiple 
scattering theory that may influence energy spectra. In the theory presented here, 
the scattering medium has been assumed to be random, i.e. structureless. However, 
already the outermost atom layer at the surface is usually more or less well ordered, 
and the reflection process may be strongly influenced by processes not treated in our 
theory. They can usually be verified quite easily from the experimental conditions. 
We mention three effects which have to be taken into account. If the kinetic energy 
component of the incoming ion normal t o  the surface is of the order of the surface 
binding energy, the backscattering process is evidently determined by the surface and 
its structure. In this case, the attractive binding interaction of the projectile with the 
surface also has to be taken into account (Jackson 1980). Second, a particle may be 
scattered back from the outermost surface layer by the correlated reflection of several 
surface atoms (surface channelling) (Pfandzelter and Schuster 1988). In this case, our 
transport theory does not apply, since the incoming beam does not really enter the 
medium. Third, electronic inelastic effects a t  the surface may dominate the interaction 
(Narmann et a1 1990). All these effects gain weight with more glancing incidence angle 
and smaller bombarding energy. The analysis presented in  this paper may be applied 
to ions which impinge with such a high normal component of the kinetic energy that 
they can penetrate the surface. 

9. Conclusions 

(1) The multiple scattering process of light ions is investigated. Special attention 
is given to the reflection of particles impinging at  a glancing angle of incidence on a 
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surface. Power-law cross sections with power exponent m are employed, and general 
solutions of the linear integro-differential equation describing the multiple scattering 
process are obtained using the method of eigenfunctions. 

We recover well-known results for the so-called diffusion case, m = 1. We give 
new analytical results for the case of scattering in an inverse square potential, m = i. 
Comparison with two approximations used in the literature for this caSe (Firsov el  
a/ 1976, Sigmund et al 1978) shows deviations in particular a t  small path lengths or 
small energy loss. 

We investigate the influence of the scattering potential on the small-angle 
distributions via their dependence on the power exponent m. We find drastic differ- 
ences for small path lengths R. In the diffusion case, for R + 0, no particles can 
escape the medium; hence the flux vanishes, cP(R -3- 0) E 0. For m < 1, however, 
there exists a finite probability that particles scatter immediately when entering the 
medium, and hence @(E -+ O j  i 0. 

For scattering cross sections with m 5 i, i t  is most probable that particles 
leave the medium immediately, i.e. for R = 0; this emphasizes the role of single 
scattering events. For m > $, on the other hand, particles leave the target most 
probably after having travelled a finite path length, analogously to the diffusion case. 

(5) The influence of the half-space boundary condition on the scattering process 
is studied. We find that with decreasing value m (i.e. for harder potentials), the 
angular distributions become more and more similar to scattering distributions in an 
infinite medium. This is connected to the above mentioned fact that particles most 
probably travel only short path lengths in the medium. However, for glancing exit 
angle, the half-space distribution vanishes exactly, unlike the infinite medium solution. 

The particle current, integrated over all path lengths, has its maximum at  
specular reflection for all vallues of the power exponent m. The particle flux shows a 
more complex behaviour, though: on the average, particles are scattered in the spec- 
ular direction for an inverse square interaction only. For more (less) heavily screened 
potentials, particles are reflected a t  larger (smaller) angles to the'surface. 

h' T Waldeer and H M Urbassek 

(2) 

(3) 

(4) 

(6) 

Appendix  1 

We present the analytical solution of the azimuth integrated multiple scatter distri- 
bution for m = f .  To this end, after azimuth integration, we split in equation (22) 
the resulting double Fourier transformation into a sum of two double cosine Fourier 
transformations. One of these may be immediately reduced to a rational function and 
we are left with 

( A l . l )  

with the definitions 

(A1.2) 
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After a rotation of the coordinate system, i.e. U = z + z ' ,  v = z - z', the second 
integral in equation (Al . l )  may be expressed as 

m 1 du e-"/2 [ cos (9 [(y + 1 - Z@)u + (y - l)v]) e-v1/(2u)dv. (A1.3) 
-U 

Using the substitution y = V J U ,  we interchange the integrals and integrate over U. 
ThG8 $!,a) is ;edi;ced to 

(1 + Y2)2 - 4 ( 7  - 1)y + 7 + 1 - zap12 1 1, I(1 + y2)2 + d [ ( 7  - 1)y + y + 1 - ZaP]2}2 dy. 
2 (A1.4) 

The integrand is a rational function, which is non-singular on the integration path. 
So a theorem from the calculus of residues may be applied (Behnke and Sommer 1965). 

Theorem. If R(z) is a rational function without singularities on its integration path 
C, the integral is given by 

Here zx  is the kth pole of order nx of R(z), a is the start point and b the end 
point of the integration path C. Since all zeros of the denominator of equation (A1.4) 
are of second order and two of them are given by equation (A1.7), the other two are 
their complex conjugates. Operating the above theorem (A1.5) on equation (A1.4) 
and after some algebraic rearrangement of the terms, we obtain 

+ A))]) 

1 
(Y1 - Y2)YYl - Y2)YYl - Yd2 

1 1 
F(y,) -4(1 + Y : ) ~  (- + - 

Y1 - Y2 Y l  - 01 Y l  - Y2 

with the definitions 
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Re(() denotes the real part of the complex number [ and gk the conjugate complex 

The solution (A1.6) consists of two parts, a rational function and a complicated 
combination of transcendental functions. They have different physical meaning. If we 
integrate equation ( A l . l )  over all p ,  the second part of the solution vanishes, as can be 
shown from equation (A1.4). So equation (32) is generated exclusively by the rational 
part of the solution (A1.6). On the other hand, if we are interested in the limiting 
case R - 0, the rational function in equation (A1.6) vanishes, and only the second 
part of the solution leads after some ponderous calculations with equation (A1.4) to 
equation (25) for m = $, 

In order to obtain equation (29) for m = $, we insert equation (Al . l )  with the 
integral representation (A1.4) in equation (28) and integrate over ( = 0 1 ~ .  Thus we 
derive 

K T Waldeer and H M Urbnssek 

Of Yk. 

@IM(z = O,p)p; 

+---- 
7 2 + 1  y - l y 2 + 1  + 210g '"> 1 + l o g 2  b - - & [ 2 (  y 

(A1.8) 

The limiting case < - m is calculated by considering the three logarithmic terms 
jointly, and then interchanging the limit and the integration. Thus we obtain for the 
limit 

(A1.9) 

After solving the integral (A1.9), substituting back into equation (A1.8), and making 
use of equation (A1.2), we obtain equation (29). 

Appendix 2 

In order to obtain the azimuth integrated equation (25), we expand the exponential 
function in equation (22) at z = 0 in powers of R. Bearing in mind that p,, > 0, for 
R = Of we are left with 

@ I M ( ~ =  0,P,R=Of;11o) 

O < m < l .  (A2.1) 



Smnll-angle multiple scattering of light pariicles 831 

With the substitution p’ = L + p ,  one integration is partially possible and equa- 
tion (A2.1)  is reduced to 

Using the integrals 

and after some rearrangement of terms in equation (A2.2), we obtain 

This resuit can be derived as well by integrating equation (25) over ’p. 

References 

Abramowits M and S t e y n  I A (edr) 1965 Handbook of Mathematical Funclions (New York: Dover) 
Behnke H and Sommer F 1965 Thcorie der onolytiachen Funklionm cinrr  komplczen Verindcrfichrn 

(Berlin: Springer) 
Bethe H A, Rose M E and Smith L P 1938 Proc. Am. Phil. Soc. 78 573 
Brsttiga J ,  Davis  J A, Sigmund P and Winterbon K B 1971 Radial. EP. 11 69 
Bohr N 1948 Mot. Fys. Medd. Donbit. Vid. Sclsk.  18 no 8 
Firsov 0 B 1967 Sou. Phya.-Dokl. 11 732 
- 1968 Sou. Phyr.-Solid S l r f c  9 1687 
- 1970 Sov. Phys.-Tech. Phys. 15 57 

Gerstl S A W,  Zardecki A ,  Unruh W P, Stupin D M, Stokes G H and Elliot N 1987 Appl.  O p f .  26 

Harriss J E, Young R and Thomas E W 1980 3. Appl.  Phyr.  51 5344 
Hou M, Eekstein W and Verbeek H 1978 Radial. E#. 39 107 
Jackson D P 1980 Rndiof. EB. 49 233 
KuSter I and Zweifel P F 1965 J .  Mofh.  Phyr. 6 1125 
Marwick A D and Sigmund P 1975 Nucl.  Inslrum. Mefhods 126 317 
Maohkova E S and Molchanov V A 1985 Medium Energy Ion Refleelion from Sofidr (Amsterdam: 

N i a n n  A, Monreal R, Echenique P M. Flores F. Heiland W and Schubert S 1990 Phyr. Rev. Lett. 

Pfandzelter R and Schuater M 1988 Nuel. Inslum. Mcfhoda B 33 898 

.,., . _  ^ ^ ^ ^ _  Firsov 0 3, :*asi&ora E s, :“:o:&anov v A and Snisar v A isis N d .  h a t r u m .  M e l n O ( l d  IJZ by5 

779 

North Holland) 

64 1601 



832 

Remizovich V S 1984 So". Phys.-JETP 60 290 
Remizovich V S, Ryazanov M I and Tilinin I S 198Oa Sou. Phys.-JETP 52 225 
- 1980b Sow. Phys.-Dokl. 25 272 
- 1981 l zv .  Atmorph. Oceanic Phys. 17 654 
Rorai B and Greisen K 1941 Rev. Mod. Phys. 13 240 
Scott W T 1963 Rev. Mod. Phyr. 35 231 
Sigmund P 1981 Sputtering b y  Porliclc Bombadmcnt &I I. ed R Behrish (Berlin: Springer) p 9 
Sigmund P, Heinemeier J,  Besenbacher F, Hvdplund P and Knudaen H 1978 Ntrcl. Inatrum. Methods 

Sigmund P and Wintabon K B 1974 Nucl. Instrum. Methodr 119 541 
Tilinin 1 S 1982 Sou. Phys.-JETP 55 751 
Tolmachev A I1986 Sou. Phys.-Tcch. Phys. 31 760 
Vukanit J V and Janev R K 1986 Nucl. Insfrum. Method8 B 16 22 
Waldeer K T and Urbassek H M 1988 Proc. X I V  SPIG 'dd, Sarajevo ed N KonjeviC, L Tanovii: and 

K T Waldeer and H M Urbassek 

150 221 

N TanoviE, contributed papers, p 189 


